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1 Abstract

I report some results archived in two projects in the theory and practice of
automatic timetabling in 1997, 1998 and spring 1999. I have built an in-
teractive program which was tested on real data. In this paper I focus on
some theoretical aspects and some design ideas. A complete description (in
german) can be found in [14].

On the theoretical side, I present a new application of the weigthed bipar-
tite matching algorithm according to Koenig/ Hall/ Kuhn and give a short
description and a small extension of the theorem of Galvin in the context of
timetabling.

On the practical side I discuss special features of the solution space and their
effects on metaheuristics and show how the models of Cooper & Kingston|[8]
and those of Burke et al. [3] can be combined with an user interface to form
an easily adaptable timetabling-system. Advantages and disadvantages of
such a general model are discussed.

I especially thank Prof. Dr. A.B. Cremers, Dipl. Math C. Hundack and Dipl.
Inform. J. Luessem from the Institut fiir Informatik III at the University of
Bonn, who supported my work and gave many usefull advices considering

my thesis and this paper.

2 Theoretical Aspects

Meanwhile most of the theoretical problems which have been used as models
for the timetabling problem have turned out to be not only NP hard but
even not approximatable to a constant factor [12]. Therefore this theoretical
section is dedicated to relatively plain structured problems which build the

frontier between the (theoretically) tractable and intractable problems.



2.1 Applying Bipartite Matching as a ”Filter”

It is well known that the unconstrained school timetabling problem can be
solved by decomposing a bipartite graph into matchings (sets of independent
edges). As has been pointed out by Chahal and DeWerra [6] using flow tech-
niques, one can also apply some edge weights and try to archive additional
goals, although of course no provable success can be guaranteed. A more
direct view on the same problem is to consider weighted matchings in bipar-
tite graphs. Here the theorem of Hall and the pigeonhole principle provide
the existence of a matching covering all vertices of maximum degree (what
of course is implicitly used by [6]). With the following ”big M”-type method
it is therefore possible to include arbitrary parameters instead of setting the
capacities of preceding edges in a network:

Let ¢ : E — Ry be an arbitrary weight function and M =1+ > cpc(e).
Now we denote by A the set of maximum degree vertices. The modified cost

function is defined as
d(e) == M |lenN Al + c(e)

Obviously a matching which covers all vertices of maximum degree is ”heav-
ier” than any matching not doing so. For a pair of matchings which cover
the same number of vertices in A the one which is better according to ¢ is
preferred. Therefore applying an algorithm like the ”Hungarian”[13] to this
new function provides a matching covering A fulfilling the requests coded in
¢ as good as possible.

Removing the chosen edges from the graph therefore still reduces the maxi-
mum degree by 1 allowing a decomposition in A(G) matchings.

Most timetabling problems are not as simple as that. They often request

more than two objects (one class and one teacher) to be scheduled simul-
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taneously. This can interpreted as a hypergraph edge coloring problem
where the vertices V' are the objects and the edges E are the lessons con-
sisting of all objects taking part. If one can find two sets C, T satisfying
leNC| >1AleNT| > 1Ve € E then obviously a mapping ¢ : E — C x T
can be created. That is, one simply takes one ”teacher” and one ”class” from
each lesson. Let S denote the set of timeslots and m; the projection on the
1th component. We will call a Timetable ¢ : E — S ct-feasible according to
6 if (e) = U(f) — mo(e) # m(o(f)Vf,e € BYi € {1,2}. Obviously a
feasible timetable is ct-feasible according to any ¢.

Now the weighted decomposition algorithm described above can be used to
create a mapping F' between timetables. The first step is to reduce the range
of the weight function to {0, 1} and to assign values the same way as a binary
representation of the matching decomposition would be created, i.e. one sets
the weight of e to 1 in the ith step if and only if e is scheduled in Timeslot
1 in a given "starting” timetable. By applying the algorithm this ”start-
ing” timetable is mapped to a new one. This mapping has the interesting

properties that:

1. Every timetable is mapped to a ct-feasible one.
2. Feasible timetables are not modified.

3. For every timeslot a feasible matching is chosen which is as similar to
the input as the request for feasibility and the slots already scheduled

allow.

It must be noted, that this decomposition is not necessarily the feasible one
most similar to the input in euclidean (or generally |.|,) distance but in a
lexicographical distance depending on the order of the timeslots.

There are two ways to include this algorithm in the framework of a general
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local search technique. The simplest, but most time consuming one is to
include it in any evaluation of the quality function ) simply by using F o Q)
instead of (). The other is similar to that used in memetic [4] algorithms:
After some local steps the mapping is applied to reach a ct-feasible solution
near the current position. While the first one heavily smoothes the profile
of the quality function the second one is - especially in the context of tabu
search - much faster, because only one evaluation is needed. Further details

can be found in the last section or in [14].

2.2 The Theorem of Galvin

Although the importance of graph coloring algorithms in the context of
timetabling is widely accepted [9], the famous theorem of Galvin (1994) [10]
seems not to have received the focus it deserves. We therefore give a short
introduction to the corresponding problem and its solution:

Let G = (V, E) be agraph and F' = {1,---, f} be aset of colors. Additionally
let g € Fyy :={h:V — {X|X C F,|X| > cl}} be a function assigning a
subset of F' to each vertex of G. We will call g(v) the set of admittable colors
for v. The problem is to find a coloring ¢ of G (i.e. a mapping ¢: V — F
satisfying (vi,v2) € E = ¢(v1) # c(vqe)) with the additional restriction that
c(v) € g(v) Vv € V. The minimum ¢l allowing such a coloring for all ¢’ € F,
is called the "list-chromatic-number”cl of G.

The theorem of galvin proofs the so called list coloring conjecture of Dinitz for
bipartite graphs. Let L(G) denote the line-graph of G (i.e. L(G) = (FE, L),
(e1,69) € L < e; Ney # 0) and A(G) denote the maximum vertex degree.

G bipartite — cl(L(G)) = A(G)

The proof is constructive and a corresponding algorithm can be found for



example in [16]. When considering timetabling problems, most unavailability
constraints are related to objects and not to lessons. Modeling the classical
school-teacher timetabling problem according to the theorem of Konig [9]
the ”availability” lists are associated with the vertices of the graph itself and
not with those of the linegraph. To apply Galvin’s method one has to decide
which unavailability an edge representing a course inherits from the incident
vertices. For simplicity we shall assume that all classes are available all the
time. We therefore can simply assign the list to the teachers. Interpreted in
this way, a weaker version of the Theorem of Galvin can be stated as:
Given a class-teacher timetabling problem, let ¢ be the maximum number of
timeslots and m be the maximum number of lessons any object is involved in.
If one assigns (¢ — m) unavailabilities to each teacher there exists a feasible
plan respecting these. Especially this plan can be found in polynomial time.
Generalizations of the theorem as found in [17] can not be applied because
the degree of the ”classes” in practice often equals A(G). But following this
direction we will now consider cases in which every vertex/edge can have its
own listsize i.e. we generalize to Fyy, ..., := {h: V = {X|X C F}, |h(v;)| =
sv; .

Most of the choosability-problems on graphs have turned out to be Iy com-
plete [17]. The theorem of Galvin provides an criterion for a special case of
linegraph choosability. One might expect that there must be problems lying
between these two extrema. Problems belonging to P can be found in [17].
We now shortly present a subproblem belonging to NP, which is not known
to belong to P.

We again start with the basic structure described above: Unavailabilities are
associated with the teachers. i.e. all edges incident to the same vertex in the

first partition share a common list. This is relaxed to the request that these



lists are of equal size.
Our construction is based on the proof of Galvin’s theorem as it is found in
[10]. We give a very short sketch of the proof. For details see the original

paper or [10]. The proof can be gratuitously divided into two major steps:

1. A graph with an orientation, in which every subgraph contains a kernel
and |g(v)| < 0% (v)(07" describing the Indegree) can be colored according

to the lists. A Kernel is an independant dominating set.

2. The linegraph of bipartite graph can be given an orientation satisfying
the conditions above and

maXeer(a) 07 (€) < A(G).

We concentrate on the second step. Let F' denote the left partition (teachers)
and S denote the right partition (classes). Again we subdivide it in some

steps:

1. Let an ordinary (i.e. non-list) coloring ¢ : E — {1,---, A} be given on
L(G) (Alg. Konig/Hall).

2. For every edge k = (e1,e2) € E(L(G)) let the orientation be e; — ey
if and only if the vertex generating k is in F' XOR ¢(e1) < ¢(ey), and

ey — e; otherwise.

As is proved in [10] any subgraph of the resulting graph contains a kernel.
We will concentrate on the indegrees effected by a fixed initial coloring. A
central observation in the proof of the theorem is, that following the described
construction any edge colored [ is reached in the oriented linegraph only by
edges with larger color adjacent via F' and from edges with smaller color from
S.

Therefore the Number of preceeding edges can be at most A(G) — 1 because
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there are [ — 1 smaller and A(G) — [ larger colors.

Now assume that an edge e is colored with the smallest possible color. Then
the indegree is equal to the degree of the vertex e N F. Choosing the second
smallest color for another edge f emanating from that vertex the number
of edges in L(G) directed towards f is also bounded by d(e N F') because f
cannot be reached from e and at most one edge can appear from S because
there is only one smaller color. Generally if only the first j > d(e N F') colors
are used the indegree effected is smaller than j.

FIG I

This together with the rest of Galvin’s proof yealds:

Theorem 1 A linegraph of a bipartite graph is choosable with listsizes s(e), (eN
F = fnF)— s(e) = s(f) if and only if it is colorable with lists l(e) =
{1,..s(e)}

(The reverse direction beeing implicated by the definition of chooasability.)
This Theorem contains the Theorem of Galvin as a special case: If all lists
are of the same size, the coloring problem is identical to ordinary graph col-
oring. The colorability problem is in NP therefore this special choosability-
problem is in NP, too. Should this colorability problem be in P some more
unavailability problems would become solvable. But one has to accept that
choosability is much stronger than colorability in general. A coloring prob-
lem may be solvable although it is not choosable with the corresponding list

sizes.



3 Practical Aspects

3.1 Some Observations on Problem Structure and Meta-
heuristics

Not only since the paper of [7] is known, that the problem of timetabling is
hard in several aspects destroying any hope for finding exact or even approx-
imate algorithms without proving P = N'P. Therefore - if one does not want
to resort to direct heuristics, which are completely based on pure experimen-
tal experience and require lots of this - one will apply one of the well known
metaheuristics, whose performance has been theoretically analyzed in some
cases (e.g. simulated annealing) and which are easily applied with varying
success.

What metaheuristic should be chosen depends on the structure of the associ-
ated solution space. In the case of timetabling one must strictly differentiate
between the so called "hard” constraints and the soft ones. The hard con-
straints consider physical limitations while the soft ones focus on wishes of
the affected persons. The main "hard ” constraints are those requesting that
one object cannot be at two places at the same time. As one easily can
see, a timetabling problem with only this kind of constraints is extremely
symmetric. Even with the additional and unrealistic conjecture that there is
only one correct partition of the lessons in slots there will be (#timeslots)!
solutions which result from simply permutating the timeslots. Applying the
soft constraints to a given partition will require the solution of a problem
which is in many aspects similar to the general traveling salesman problem.
A good coding of the above problem concentrating on the -more important-
hard constraints will therefore try to operate on equivalence classes in respect

to the operation of timeslot permutation. Ignoring this effect leads to bad



performance and results as shown by [11]. Especially genetic algorithms tend
to fail on this kind of problems because several species are likely to belong
to the same class. On the other hand one has to ignore this effect in order to
pay attention to the soft constraints which often show no symmetry at all.

We therefore chose tabu-search as metaheuristic because it uses two kinds of
functions, the ordinary cost-function and a tabu-function. The tabu-function
can be used to force the process to leave the current equivalence class by
considering partitions instead of timeslots. The tabu-list contains pairs of
lesson-types. It prevents types of lessons and thereby lessons which have
been separated form being regrouped. Considering types instead of concrete
lessons removes another symmetry created by several lessons of the same
type. When moving a lesson we chose another lesson from the ”source” slot
at random an add the unordered pair to the tabu list. Considering ordered
pairs would prevent lessons from beeing repositioned together, which seemed
an unnessesary or perhaps even wrong attemt. The size of the admissible
neighborhood shrinks -depending on the number of lessons with the same

type - very fast when the length of the tabu-list ist growing.

3.2 A User Interface for Cooper & Kingston’s Model
combined with ASAPs’ attribute system

In order to provide the user with maximal flexibility, we chose a subset of
Cooper & Kingstons’[8] model (although it was unknown to us at this time),
especially we removed the possibility to request ”object consistency”, e.g. to
ask for a constant but unspecified room. As Carter [5] has pointed out, this
would have made the room allocation subproblem AP-hard. As in [8] the
basic founding principle of the system is that of a set. A set may include

objects, timeslots or other sets either as a subset or as an element. The latter
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differentiation is used for output purposes only. The possible interpretation,
that all members of a set as an element have to be used together if that set
is used at all, would change the resource (room) -allocation problem into an
instance of set packing, and make it NP-hard again.

FIG II

This concept of a system of sets ist now used as a semantic abstraction layer
in the overall construction. Operations "above” handle sets and don’t see
how they are build. Operations ”"below” build sets, but do not care what
happens to them. This concept has proved advantageous for a quick and
stable construction but seemed a bit clumsy considering direct relations from
objects perceived by the user to the underlying constructs. In this paper this
layer allows to discuss the parts ”below” and ”above” separately.

The set building part is very similar to that of Burke et. al. [3]. Objects
can have different attributes (text, numbers, bools) and sets are formed by
evaluating characteristic formulas using these attributes. Additionally sets
can be formed manually.

FIG III

In order to facilitate preferences a value describing in five grades, whether
the objects of these sets like each other or not, can be assigned to each pair of
sets. Requesting, that the set-subset relation is acyclic, which is true for any

sane construct anyway, values are propagated using the following formula:

(Zaoy w(2,2)) + (Tanaw(z,))
Zsz/\w(z,:v);éO 1) + (ZzDz/\w(z,y);éO 1)

U)(.f, y) =
(

(C means direct relations and not the transitive hull). Values equaling zero
represent ”ignore” and are therefore not accounted. In order to make the
evaluation process cycle-free the sets are sorted topologically according to

the set-subset relation. Then sets are handled in this order, and for each set
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the relations to the already finished sets are evaluated, looking at these in
topological order, too. Values given by the operator override the calculated
values at every stage of the propagation.

”Unary” requests like gap reduction are propagated according to the topo-
logical structure averaging over the predecessors.

FIG IV

For instance and following the example of [3] this allows to define an attribute
”wheelchair access”, to use this to create a set of special rooms automatically
and to specify that these rooms are preferred by the set of disabled people
created in the same way. Then one could pick a single room which is espe-
cially disliked by one of the staff and reset their relation to ”dislike” overriding
the above.

The presentation part consists of user modificatable tables based on the set-
subset relation. Any two triples of sets can be chosen to form the index of
the table, allowing to create almost any view on the data. Copy-operations
are adjusted according to the context of each cell, allowing the complete
creation of the plan by just clicking. This is best understood by looking
at the following screenshot: We have chosen a tuple for the top categories
and a single set for the left ones. The clipboard shows lessons striped from

timeslots and rooms, which will be added again by reinsertion into the table.

FIG V

3.3 An online Improving Assistant

The so called "new wave” in timetabling [2] supports the use of interactive
features in timetabling programs. The provable intractability of the problem
and the excellence of human timetablers support this idea. But with the

exception of the simplest checking and moving operations partial problems
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turn out to be equivalently hard, thus disabling the possibility to support
the user with solutions to single aspects.

Seeing the relationship between user and program more as a partnership
than as a slavery in any direction, one easily arrives at models of two persons
trying to solve a problem by cooperation. They will usually state their prob-
lem, start to think, and whoever reaches a conclusion first will suggest it to
the other, which may accept or not. In this context the handling of human
suggestions by the program, especially the detection of clashes, is one of the
most common features of timetabling programs. In the other direction either
a complete plan is specified, which development has to be awaited by the
user or moves which do not cause an immediate clash are presented. In both
situations the time spent for thinking by the user is a complete idle time
for the program and most probably for the whole system, because mostly
single-user PC’s are used for practical timetabling.

To exploit this time leads into the field of so called ”anytime” algorithms,
which can be interrupted at any time giving a better result the more time is
spent waiting. This kind of algorithm is usually found in engineering envi-
ronments, where calculation is interrupted, when the minimal specifications
are met.

For example any local search algorithm as described by [15] could be trans-
formed to an anytime algorithm by just outputting the best solution found
so far.

It didn’t seem reasonable to provide the user with a suggestion providing a
sequence of steps which does not lead to a clash in a bounded number of
steps. Furthermore the resulting moves often cannot be understood by the
user.

We therefore chose to look for provable negative instances, that is moves
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which cannot lead to a solution, in order to warn the user not to perform
them. Therefore a exhaustive search algorithm was forced with some over-
head to be "anytime” by performing a complete search for sequences of a
successively growing depth. From the field of online-algorithms is known,
that doubling the length provides optimal results, when the costs are pro-
portional to the depth[1]. In this case it is exponential, so we chose a simple
one step increment. Changes which cannot result in a solution without re-
moving an already set lesson are marked but not prohibited, because the user

might know, what he is doing.

3.4 Annotations to the Actual Implementation

We didn’t implement the algorithm of Galvin because ist is still to spe-
cialized to be integrated in a general environment. The ”filter”-algorithm
deduced from the theorem of Hall was first implemented standalone: Per-
forming quite poor on the data of a local high school in the beginning it’s
performance could be vastly improved by resorting the timeslots according to
the number of clashes and restarting the algorithm using the previous output
as an input. The number of clashes cold be reduced to 2% quite fast but in
a very oscillating manner and without recognizable respect of the wishes.

The perhaps most important but in principle trivial insight gained by this
was that it is necessary to spread the information given in the wishes over
the whole set of timeslots. Suppose there are two teachers A and B, one class
having one lesson with each teacher, two Timeslots 7'S; and T'S; and all are
indifferent to each other except for teacher A specially liking 7°S;. Then it
is not sufficient to give all relations except (A,7'S;) the same value. Any
technique modifying 7'S, first will have no clue that A in a way dislikes it
in respect to T'S;. Placing A here will force B to be placed in T'S; resulting
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in the need for many exchanges to get A moved. We therefore suggest to
divide any value given by the user by the average of all values belonging to
the corresponding category (Timeslots, Rooms, etc.).

Implementing the algorithm as a filter for tabu search in the memetic sense
especially accelerated the reduction of clashes in the first 500 iterations but
showed no effect later on. Tuning the parameters resulted in changes be-
tween 50% and 5% of violated constraints, but a theoretic foundation of this
behaviour could not be identified.

The support of general sets and the ”shealding layer” was found to be a
suitable method. By defining the set-creation layer and then ignoring it the
system can appear as specialized timetabling tool for any application. Labels
and semantics can be chosen arbitrarily.

On the other hand it increased the complexity of every single operation by at
least a factor proportional to the input size. Only a specialized treatment of
special cases (sets with one ore two elements) allowed an acceptable number
of several thousand iterations per hour. Furthermore knowledge given for
specialized problems could not be applied, but the possibility to integrate

several solution methods has allowed partially to overcome this problem.
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