A Timetabling System for the German
“Gymnasium”

Martin Lohnertz

Institut fiir Informatik V*, University of Bonn

Abstract. We present a timetabling program consisting of a batch solver
and an interface for manual improvements. The batch solver is based on
a tabu search metaheuristic which respects symmetry aspects of the so-
lution space. We show how this can be combined with a graph coloring
algorithm.

Model and interface are based on a set system structure. This allows
a fast input of constraints and a customizable presentation. We show
how to exploit idle phases of the interactive interface for better decision
support.

1 Structure of our Model

1.1 The German “Gymnasium”

Timetabling for a german “Gymnasium” is a mixture of class-teacher timetabling
and full course timetabling as it can be found at universities. Our model allows
to represent a course timetabling problem but we will take some advantage of
the simpler structure of the actual problem in Sec. 2.3.

The curriculum of a german “Gymnasium” consists of three phases. The classes
5 to 7 are taught in a class - teacher mode. In the classes 8-10 special courses
are formed from groups of pupils from different classes. Classes 11-13 are taught
in a course based system with arbitrary groups of students.

There are numerous soft constraints, e.g. teacher preferences or lessons requiring
two subsequent timeslots.

We assume that the assignment of the teachers to the courses has already been
done. We concentrate on the placement of the lessons in a limited number of
timeslots and the allocation of suitable rooms and other resources.

1.2 Sets, Groups and Lessons

Our model is similar to that of Cooper and Kingston [2]. The founding principle
of our system is that of a set. A set may include objects, timeslots or other sets.
The sets are created from the base objects, i.e. teachers, classes rooms etc. This
can be done manually or automatically based on attributes like room size or
teaching abilities. A set may be contained in a different set as an element or as a

* this work was supported by Institut IIT

subset. The only restriction is that no set may contain itself cyclically. Typically
there are some timeslot-only sets, e.g. the set “Monday” containing all timeslots
which lie on a monday.

A problem specification is a list of “groups” each consisting of requests for some
numbers of objects from specified sets. E.g. a group may consist of a request for
teacher “A” a request for class “B” and a request for some chemistry room. Each
group has a multiplicity describing how many timeslots have to be assigned to
that group. The batch-solver assigns a timeslot to each (replication of a) group.
Then is assigns objects to each request in that group by weighted matching. The
results are called lessons.

1.3 Constraints

Using the set-concept constraints and preferences can be specified efficiently as
they can be applied to all elements of a set simultaneously. There are constraints
which apply to single objects only (whose handling is straightforward) and con-
straints which apply to the relations between objects.

Here we focus on relations like “teacher A likes Room 512”. For each pair of sets
(z,y) a value w(zx,y) can be specified which describes in seven grades whether
objects of these sets or of subsets of these sets should be allocated together or
not. For the other sets these values are derived from the relation-values of their
respective supersets. Requesting that the set-subset relation is acyclic values can
be propagated using the following formula:

(Zooyw(e,2)) + (X, w(z,)
22 SyAw(ze)#£0 1) + (ZzDz/\w(z7y);£0 1)

(D means direct relations and not the transitive hull). Values equaling zero rep-
resent “ignore” and are therefore not included in the averaging.

w(z,y) = (

2 The Batch-Solver

2.1 General Structure

Our solver consists of two combined parts: A tabu-search metaheuristic and a
weighted matching algorithm. The tabu search places (replications of) groups
in the timeslots. Whenever it considers a new placement it has to evaluate a
quality function to find out how good that placement is.

In order to do this the matching algorithm is invoked to assign objects to
the resource requests in the groups. First a complete bipartite graph is created.
The requests form one set of vertices and the objects form the other. Each edge
is weighted by a value describing how good the respective object fulfills the
corresponding request. Then a maximum weight matching is constructed and
the requests are replaced with a set containing the respective object they have

been matched with. By this process groups are transformed to lessons, which
contain only singleton sets.

The lessons then can be checked for clashes and fulfillment of constraints and
preferences. This results in a value which is returned to the tabu search as the
quality of the current placement.

2.2 Tabu Search

The solution space of a timetabling problem with only “hard” constraints (i.e.
physical limitations) is symmetric in several aspects, especially:

1. There will be at least (#timeslots)! solutions which result from permutating
the timeslots.
2. There often is a large number of identical lessons (multiplicity of groups).

Therefore an algorithm should operate on equivalence classes of these symmetries
[4][5]. Unfortunately the soft constraints often have no symmetry at all.

We decided to use Tabu Search[6] as it utilizes three functions, the “ordinary”
cost function, the “tabu” function and the “aspiration” function. The first and
last represent the real cost of a timetable including soft constraints. We have put
a strong emphasis on the hard constraints by giving each clash a weight of 1000
while preferences have an influence in the order of at most 100. These values
are subject to further experiments. The base operation in our solver defining the
“neighborhood” is the movement of a single lesson. This neighborhood turned
out to be too large so we restrict our search to a subset of the neighborhood.
Like [3] we evaluate moves from a single timeslice only. We select this timeslice
based on an ordering by the sum of the number of clashes and the number of
steps since that timeslice has been considered previously.

The “tabu”-function is used to make the search leave the current equivalence
class. It is implemented as a “tabu list”. When moving a lesson A created by
group G(A) we chose another lesson B from the “source” slot at random and add
the unordered pair of their groups (G(A), G(B)) to the tabu list. We then forbid
to place a lesson from G(A) into any timeslot containing lessons from G(B). On
the one hand this prevents lesson A from being moved back to the old timeslice.
On the other hand it prevents it from being inserted into timeslices which have
the same structure as that timeslice. That the lesson B can still “follow” A
to the new timeslot allows complete blocks to move. This furthermore implies
that a timetable different to the current but in the same equivalence class can
in principle still be reached, but this has become somewhat harder. If no more
moves are possible we shrink the tabu list by dropping older entries.

The aspiration function overrides the veto of the tabu function if the solution
considered is better than the best one found so far.

2.3 Hybridization

The unconstrained class-teacher timetabling problem can be solved by decom-
posing a bipartite graph into matchings (Koenig 1918 [7]). The problem is mod-
eled by a bipartite multigraph. Teachers and classes are interpreted as the two

vertex sets, and each lesson is represented by an edge connecting its teacher
with its class. Two lessons can be placed in the same timeslot if they do not
share a teacher or class, i.e. when the corresponding edges are independent. Let
I be the largest number of lessons a single teacher or class is involved in, i.e.
the maximum degree of a vertex in that graph. One can show that there al-
ways exists a set of independent edges (matching) which involves all teachers
and classes which participate in [lessons. If one places these in a timeslice and
recursively considers the remaining problem the value of I decreases by one for
this subproblem. Therefore [timeslices are sufficient (and necessary) to place all
lessons. Using flow techniques[1] or Galvin’s list-edge coloring algorithm(8], one
can include some additional constraints.
We will use Koenig’s method as a subroutine. Let G = (AUB, E) be a bipartite
Graph. Let ¢ : E — IRy be an arbitrary weight function and M := 1+ _p c(e).
Denote by A the set of maximum degree vertices. We define a new cost function
by }

¢ (v,w)) = M [{v,w} N A] + e((v,w)) (1)

for edges (v,w) € E. A matching covering all vertices of maximum degree is
"heavier” than any matching not doing so. For a pair of matchings covering the
same number of maximum degree vertices the one which is better according to
¢ is preferred. Using weighted matching algorithms a matching covering A and
approximately fulfilling the requests coded in ¢ can be found.

While most school timetabling problems are not simple class-teacher problems,
most lessons still can be associated with at least one teacher and one “class”.
Therefore we can generalize this method by temporarily ignoring other objects
and reconsidering them when analyzing the quality of a plan.

The methods described above can be used to construct a timetable modification
subroutine which can be applied to any given timetable:

1. strip the lessons of all objects except for one teacher and one class

2. model each lesson by an edge in a bipartite multigraph using the classes and
teachers as vertices

3. Decompose the graph into matchings by executing the following steps for
each timeslice
(a) set all edge weights ¢ to 0
(b) set c(e) to 1 iff the lesson represented by edge e was placed in this

timeslice in the original timetable

(c) calculate weights ¢’ according to formula (1)
(d) find a maximum weight matching in the graph
(e) place the lessons corresponding to matching edges in the current timeslot
(f) remove the edges contained in the matching from the graph

4. reassign the objects stripped in step 1 by weighted matching

This routine has the interesting properties that:

1. Every timetable is mapped to a timetable which is feasible according to the
chosen teachers and classes.

2. Feasible timetables are not modified.
3. For every timeslot a feasible matching is chosen which is as similar to the
input as the request for feasibility and the slots already scheduled allow.

A straightforward application of this method would be to invoke it in the context
of the quality function. Then the tabu search algorithm actually would search
for the best input for this subroutine. Unfortunately this turned out to be too
time consuming, as the quality function must also be evaluated for all the moves
the tabu-search decides not to perform.

We decided to apply this method to the intermediate solution of the tabu search
algorithm each 500 iterations. This is motivated by the idea that the tabu search
moves out of the “attraction” range of one minimum into that of a different one.
Then the coloring algorithm is used to jump fast towards that new minimum.
Figure 1 shows the number of resource clashes over the number of iterations for a
german school with 590 lessons which had to be placed in 32 timeslots (starting
with a random placement). Note that each lesson can cause several clashes. The
figure compares the intermediate solutions found by the plain algorithm with
those found by the hybrid-algorithm. The peaks are caused by diversification
steps. In the run displayed the best solution was actually found by the plain
algorithm but on average the hybrid variant shows better values.

Fig. 1. Plain Algorithm vs. Hybrid Algorithm

3 Interactive Improvements

3.1 General Structure of the User Interface

The groups/lessons are displayd in user modifiable tables based on the set-subset
relation. Here we differentiate between sets as elements and sets as subsets of
other sets. When a set is chosen as a table index, the row (or column) headings
are set to the names of the sets which are contained as elements. If there is a real
subset it’s name is not printed. Instead the scheme is applied recursively to it’s
elements and subsets. For example the sets “monday” and “tuesday” could be
contained in the set “days” as an element. If “days” is chosen as a table index
then there will be rows “monday”, “tuesday” and so on. On the other hand
a set “pupils” could contain all sets representing classes as subsets. Choosing
“pupils” as a table index will list all names of the pupil-sets being elements of
the classes-sets. The lessons are inserted into each field for which there is an
nonempty intersection between an index set and a set contained in the lesson.
Any two triples of sets can be chosen to form the indices of the table (three
for the rows and three for the columns), allowing us to create almost any view
on the data. The elements of the second and third sets are repeated for each
element of the preceding sets.

Copy-operations are adjusted according to the context of each cell. Whenever
a group (lesson) is cut all objects causing this group to be displayed at the
given position are removed. This is best understood by looking at the following
screenshot (Fig. 2): We have chosen a tuple for the column headings and a single
set for the rows. The clipboard shows lessons striped from timeslots and some
teachers, which will be added again by reinsertion into the table. In the top left
corner there is a C++ lesson given by teachers F and AE to class I in room
R14 on saturday (german: Samstag) morning. This lesson also contains the sets
F and “Samstag.1”. These are not displayed as they are implicitly given by the
table structure. When cutting the lesson they will be removed. Upon reinsertion
a minimal hitting set is calculated by a greedy heuristic for all sets defining the
new position which do not include one of the inserted sets. For example when
inserting in a table position with “Dienstag” (Tuesday) at the top and “2.” to the
left there is a set contained in “Dienstag” and “2.” which is “Dienstag.2”. This
will be added to the lesson making it appear at the desired position. The same
presentation and modification methods are available for the groups allowing a
comparison of requests and created lessons with only a small context switch.

3.2 Decision Support

The time spent thinking by the user is completely idle time for the program and
most probably for the whole system, because mostly single-user PCs are used for
practical timetabling. We try to exploit this time to calculate some suggestions
for the proceeding of the manual process.

| Ultraplan - [Anonym1] =18]x]

[Z) Datei Bearbeiten Stammdaten Planung Ansicht Fenster 2 =l81x|
i@ 4[%l@| sle)v| @ nm m®

F AG AL -
S g A g i g IMittwoch Donnersta Freitag g A g
1 |C++1 udi
. [AER14 P
Auto Audi
Para AM

— |C++ Rechnemetze Algorithmik K G

L++ Hechnermetze Algonthrk K C

.NI

-
b Vertauschen

Entfernen
A Rech Q
L lAN R24

Ende

. | | e
Kl E _>l_I
Driicken Sie F1, um Hife zu ethakten. [INoM |

Fig. 2. The Clipboard & Inserting; Zwischenablage=Clipboard,vertauschen=exchange

It didn’t seem reasonable to calculate a (necessarily) bounded sequence of

steps which does not lead to a clash. Furthermore the resulting moves often
cannot be understood by the user. We therefore chose to warn the user about
moves which provably do not lead to a solution. We do this by an exhaustive
search whose search depth increases the more the longer the user does nothing.
We assume that the user wants to insert the elements of the clipboard into the
plan one by one. The clipboard is organized as stack. When clicking on a empty
cell the topmost (or the selected) clipboard entry is popped and pasted.
In iteration one we mark all fields “forbidden” in which the topmost entry of the
clipboard cannot be placed without a clash. If the user is still waiting we also
mark the fields in which the topmost entry of the clipboard cannot be placed
without making a clash free inserting of the second clipboard entry impossible.
Then we use a lookahead of 3,4 and so on. In the time we tended to think
about our next move the program usually reached level three or four. So we are
warned all insertions which will lead to a no chance situation within the next
four placements.

Figure 3 gives an example: It consists of 3 objects (01,02,03) and two times-
lices (t1,t2). Four lessons consisting of one or two objects ((01),(02),(03),(01,02))
have to be placed into the two timeslots. The insertion of the lesson containing
object ol in timeslot ¢1 would make the placing of 01, 02 impossible and is there-
fore forbidden (diagonal line).

D|S(E| & =@ See B mB =

il

t2 Zwischenablage

03 tl o2 t2

ol

ol 02

Fig. 3. Warning the user (“Zwischenablage”=Clipboard)

References

[1]

N. Chahal and D. de Werra. An interactive system for constructing timetables on
a PC. European Journal of Operational Research, 40:32-37, 1989.

Tim B. Cooper and Jeffrey H. Kingston. A program for constructing high school
timetables. In Proceedings of the First International Conference on the Practice
and Theory of Automated Timetabling (ICPTAT 95), pages 132-143, 1995.

D. Costa. A tabu search algorithm for computing an operational timetable. Furo-
pean Journal of Operational Research, 76:98-110, 1994.

A E. Eiben, J.K. Van der Hauw, and J.I. Van Hemert. Graph coloring with adaptive
evolutionary algorithms. J. Heuristics, 4:25-46, 1998.

W. Erben. A grouping genetic algorithm for graph colouring and exam timetabling.
In Proceedings of the third conference on practice and theory of automated
timetabling (PATAT 2000), page 397, 2000.

A. Hertz. Finding a feasible course schedule using tabu search. Discrete Applied
Mathematics, 35:225-270, 1992.

Denes Konig. Theorie der Graphen. Chelsea, 1918.

Martin Lohnertz. Theorie und Praxis der automatischen Stundenplanerstellung.
Diplomarbeit, Institut fiir Informatik Bonn, 1999.
http://www.loehnertz.de/Diplom.html.

