

Niveau Transformations:

A Tool for Method Classification and Lesson Planning

Martin Löhnertz - University of Trier

loehnert@uni-trier.de

Initial Niveau Relations (capability vs. difficulty)

 Students

 Problem

 Computer
Students can solve the problem but

not implement a working program.

 Students &

 Computer

 Problem
Students can implement a program

for an understood solution.

 Problem

 Students &

 Computer
Students cannot solve the problem

and thus not implement anything.

 Computer

 Problem

 Students
Students apply library functions

which they do not fully understand.

Transformations

Empowerment
Add functions to

the computing

system

(or allow usage)

Introduce high level

functions that match the

students’ too abstract

concepts.

Pedoni, M. and Bay, T.G. 2007. Vizualize and Open

Up. Informatics in Edu., 6.1, 153–162

Encapsulate solution in a

library and use as black

box.

Haberman, B.; Muller, O., "Teaching abstraction

to novices: Pattern-based and ADT-based

problem-solving processes". FIE 2008. 38th

Annual , vol., no., pp.F1C-7,F1C-12, 22-25 Oct.

2008

Provide functions that

help solve the problem

and discuss modeling or

parameters.

Szlávi, P. and Zsakó, L. 2006. Programming Versus

Application. ISSEP 2006, LNCS 4226, 48-58

Modify program to

visualize solution steps.

Eric Fouh, Monika Akbar & Clifford A. Shaffer

(2012): The Role of Visualization in Computer

Science Education, Computers in the Schools,

29:1-2, 95-117

Restriction
Remove functions

from the

computing system

(or disallow usage)

Remove irritating

redundant functions if

the number of options is

overwhelming.

Port code to smaller

embedded or older

devices.

Müller, J. 2009. Der selbstgebaute Abakus. LogIn 157/158,

79-83

Disallow usage of

advanced functions

(e.g. “sort”).

Hasker, R. W. 2005. An Introductory Programming

Environment for LEGO® Mind-Storms™ Robots.

MICS 2005, paper 87

Complicate
Increase size

Add requirements

Enlarge the input to

have the students

personally experience

the computational

problem
Gasper, F. 1991. Das

Weihnachtsbaumbehängungs-problem. LogIn 11

Heft 6, 46-49

Request scalability,

modularization, error

handling etc.

Husch, B. 1991. Wiederverwendbare Software-

Bausteine. LogIn 11 Heft 3, 51-53

Paradox known from

mathematics: More

general problem might

have easier solution.
De Villiers, M. and Garner,M. 2008. Problem

solving and proving via generalization. in Learning

and Teaching Mathematics, April 2008, No. 5, pp.

19-25. AMESA.

Try to make the problem

unsolvable for a

computer to analyze

why the original version

was approachable.

Reduce
“Didactic

Reduction”

Add assumptions

More abstract modeling.

Identify exemplary

instances.

Baumann, R. 2011. Eingebettete Systeme

verstehen Teil 1. LogIn 171, 49-61

Try to automate solution

process for simple

instances

(compiler generators).
A. Demaille. Making compiler construction

projects relevant to core curriculums. (ITICSE’05),

pages 266–270, Universidade Nova de Lisboa,

Portugal, June 2005.

Didactic Reduction.

Remove special cases by

additional assumptions.

Schlemmer, M. 2011. Informatik Fortbildung

Kommunikation in Rechnernetzen.

http://tinyurl.com/k5onsyl

Didactic Reduction –

solve easy instances and

use the program to

verify students‘

attempts.

Enlighten
Teach new

methods

Give hints

Teach methods to

transform descriptive

solutions into code.

Strecker, K. 2011. Zur Didaktik der Algorithmik.

Proc. INFOS 2011, LNI P-189, Bonn 2011, 187-196

Introduce new methods

on well understood

example (e.g. DIRR)

Houk, S. 1999(?). “Design-Implement-Redesign-

Re-implement (DIRR) – Pattern”

http://extras.springer.com/1999/978-3-642-

63632-5/OFFLINE/PPP/PP0.HTM

Provide hints to solve

the problem.

Kujath, B. 2006. Ein Test- und Analyseverfahren

zur Kontrastierung von Problemlöse-Prozessen

informatischer Hoch- und Niedrigleister. LNI P-99,

Bonn 2006, 49-69

Analyze the existing

program. Use-Modify-

Create Approach

Lee, L. et al., 2011. Computational thinking for

youth in practice. ACM Inroads 2.1, 32-37

Restrain
Disallow Methods

Emulate Infants

Enforce objects

Reduce the pupil’s

abilities to that of the

computer by imagination

or force (e.g. Blindfolds).

Diethelm, I., Geiger, L. and Zündorf, A. 2005. Mit

Klebe-zettel und Augenbinde durch die

Objektwelt. INFOS 2005, 149-159

Learning by teaching

(imagined) younger

pupils.

Yu-Chen, K. and Zhe-Yu, W. 2013. An online Peer-

Tutoring Platform for Programming Languages

based on Learning Achievement and Teaching

Skill. IJITCS 7.4, 65-70

Quit searching solution

and solve by brute force

methods.

Anany Levitin and Mary-Angela Papalaskari. 2002.

Using puzzles in teaching algorithms. SIGCSE Bull.

34, 1 (February 2002), 292-296.

WiPSCE 2014

The 9th Workshop in Primary and

Secondary Computing Education

A novel classification scheme for problem solving scenarios and applicable variation methods based on the relations

between problem complexity, students’ capabilities and features of the technological platform known to the students.

This systematic approach explores alternative ways of lesson planning and analysis extending classic “didactic reduction”.

classical approaches

not applicable (?)

switch meta level/problem

Poster available for download:

http://www.loehnertz.de/martin/

didaktik-der-informatik/wipsce14-poster

*derived from “Neumagener Schulrelief” by Rheinisches Landesmuseum Trier (Foto: Thomas Zühmer) [CC BY-NC-SA]

*

